

Equilibria of Infinitely Repeated Games

Game Theory Course: Jackson, Leyton-Brown & Shoham

Game Theory Course: Jackson, Leyton-Brown & Shoham

Strategy Space

• What is a pure strategy in an infinitely-repeated game?

Strategy Space

- What is a pure strategy in an infinitely-repeated game?
 - a choice of action at every decision point
 - here, that means an action at every stage game
 - ...which is an infinite number of actions!
- Some famous strategies (repeated PD):
 - Tit-for-tat: Start out cooperating. If the opponent defected, defect in the next round. Then go back to cooperation.
 - Trigger: Start out cooperating. If the opponent ever defects, defect forever.

Nash Equilibria

- With an infinite number of pure strategies, what can we say about Nash equilibria?
 - we won't be able to construct an induced normal form and then appeal to Nash's theorem to say that an equilibrium exists
 - Nash's theorem only applies to finite games
- Furthermore, with an infinite number of strategies, there could be an infinite number of pure-strategy equilibria!
- We can characterize a set of payoffs that are achievable under equilibrium, without having to enumerate the equilibria.

Definitions

- Consider any *n*-player game G = (N, A, u) and any payoff vector $r = (r_1, r_2, \ldots, r_n)$.
- Let $v_i = \min_{s_{-i} \in S_{-i}} \max_{s_i \in S_i} u_i(s_{-i}, s_i).$

- Bayesian Normal-form actions Bayesian Normal-form actions reading to the common reading
- i's minmax value: the amount of utility i can get when -i play a minmax strategy against him

Definition

A payoff profile r is enforceable if $r_i \ge v_i$.

Definition

A payoff profile r is feasible if there exist rational, non-negative values α_a such that for all i, we can express r_i as $\sum_{a \in A} \alpha_a u_i(a)$, with $\sum_{a \in A} \alpha_a = 1$.

• feasible: a convex, rational combination of the outcomes in G.

Folk Theorem

Theorem (Folk Theorem)

Consider any *n*-player game G and any payoff vector (r_1, r_2, \ldots, r_n) .

- If r is the payoff in any Nash equilibrium of the infinitely repeated G with average rewards, then for each player i, r_i is enforceable.
- 2. If r is both feasible and enforceable, then r is the payoff in some Nash equilibrium of the infinitely repeated G with average rewards.

Payoff in Nash \Rightarrow enforceable

Part I: Suppose r is not enforceable, i.e. $r_i < v_i$ for some i.

Payoff in Nash \Rightarrow enforceable

Part I: Suppose r is not enforceable, i.e. $r_i < v_i$ for some i. Then consider a deviation of this player i to $b_i(s_{-i}(h))$ for any history h of the repeated game, where b_i is any best-response action in the stage game and $s_{-i}(h)$ is the strategy of other players given the current history h.

Payoff in Nash \Rightarrow enforceable

Part I: Suppose r is not enforceable, i.e. $r_i < v_i$ for some i. Then consider a deviation of this player i to $b_i(s_{-i}(h))$ for any history h of the repeated game, where b_i is any best-response action in the stage game and $s_{-i}(h)$ is the strategy of other players given the current history h. By definition of a minmax strategy, player i will receive a payoff of at least v_i in every stage game if he adopts this strategy, and so i's average reward is also at least v_i . Thus i cannot receive the payoff $r_i < v_i$ in any Nash equilibrium.

Feasible and enforceable \Rightarrow Nash

Part 2: Since r is a feasible payoff profile and the α 's are rational, we can write it as $r_i = \sum_{a \in A} \left(\frac{\beta_a}{\gamma}\right) u_i(a)$, where β_a and γ are non-negative integers and $\gamma = \sum_{a \in A} \beta_a$.

Feasible and enforceable \Rightarrow Nash

Part 2: Since r is a feasible payoff profile and the α 's are rational, we can write it as $r_i = \sum_{a \in A} \left(\frac{\beta_a}{\gamma}\right) u_i(a)$, where β_a and γ are non-negative integers and $\gamma = \sum_{a \in A} \beta_a$. We're going to construct a strategy profile that will cycle through all outcomes $a \in A$ of G with cycles of length γ , each cycle repeating action a exactly β_a times. Let (a^t) be such a sequence of outcomes.

Feasible and enforceable \Rightarrow Nash

Part 2: Since r is a feasible payoff profile and the α 's are rational, we can write it as $r_i = \sum_{a \in A} \left(\frac{\beta_a}{\gamma} \right) u_i(a)$, where β_a and γ are non-negative integers and $\gamma = \sum_{a \in A} \beta_a$. We're going to construct a strategy profile that will cycle through all outcomes $a \in A$ of G with cycles of length γ , each cycle repeating action a exactly β_a times. Let (a^t) be such a sequence of outcomes. Let's define a strategy s_i of player i to be a trigger version of playing (a^t) : if nobody deviates, then s_i plays a_i^t in period t.

Feasible and enforceable \Rightarrow Nash

Part 2: Since r is a feasible payoff profile and the α 's are rational, we can write it as $r_i = \sum_{a \in A} \left(\frac{\beta_a}{\gamma} \right) u_i(a)$, where β_a and γ are non-negative integers and $\gamma = \sum_{a \in A} \beta_a$. We're going to construct a strategy profile that will cycle through all outcomes $a \in A$ of G with cycles of length γ , each cycle repeating action a exactly β_a times. Let (a^t) be such a sequence of outcomes. Let's define a strategy s_i of player i to be a trigger version of playing (a^t) : if nobody deviates, then s_i plays a_i^t in period t. However, if there was a period t' in which some player $j \neq i$ deviated, then s_i will play $(p_{-i})_i$, where (p_{-i}) is a solution to the minimization problem in the definition of v_i .

Feasible and enforceable \Rightarrow Nash

First observe that if everybody plays according to s_i , then, by construction, player *i* receives average payoff of r_i (look at averages over periods of length γ).

Feasible and enforceable \Rightarrow Nash

First observe that if everybody plays according to s_i , then, by construction, player *i* receives average payoff of r_i (look at averages over periods of length γ). Second, this strategy profile is a Nash equilibrium. Suppose everybody plays according to s_i , and player *j* deviates at some point.

Feasible and enforceable \Rightarrow Nash

First observe that if everybody plays according to s_i , then, by construction, player *i* receives average payoff of r_i (look at averages over periods of length γ). Second, this strategy profile is a Nash equilibrium. Suppose everybody plays according to s_i , and player *j* deviates at some point. Then, forever after, player *j* will receive his min max payoff $v_j \leq r_j$, rendering the deviation unprofitable.